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Abstract: In a past work, models for Jupiter were constructed in base to a set of concentric distorted spheroids 

(“spheroidals”) rotating differentially—whose semi-axes are independent of one another—a task that was achieved with a law 

of rotation deduced from a generalization of Bernoulli’s theorem, and which holds exclusively for axial-symmetric masses. The 

shape of the mass is that of a spheroid whose surface equation contains an extra term, d/z
4
, where d is a parameter which 

measures the degree of distortion. Each layer rotates with its own profile of angular velocity. The rotation law has a simple 

dependence on the derivative of the gravitational potential. No magnetic fields or equations of state were involved. The multi- 

structures were demanded, firstly, to reproduce the gravitational moments of the planets, as surveyed by space missions; and, 

secondly, to be equilibrium figures. For the calculation of the gravitational moments, a minimization procedure was employed. 

Paying attention on the outermost laye—the relevant one in the present context—of the formerly reported models for Jupiter, 

we became aware that they all share an angular velocity profile that decreases from the pole towards the equator, an event that, 

so far, has not been verified observationally. Since figures with profiles of the opposite tendency turned out to be also possible, 

they should be included as candidates for our purpose, as effectively they are herein as a complement of that work. The same 

procedure is here entailed to Saturn, for which figures to show one or the other tendencies are as well obtained. The dual 

behavior of the rotation profiles may be explained by arguments involving the centripetal force. According to this standpoint, 

the double behavior is a consequence of the algebraic sign assigned to d: if positive, so that the surface is more bloated than 

that of a spheroid, the decreasing tendency results; whereas if negative, so that the surface is more depressed, the increasing 

tendency shows up. This, in turn, is because for d negative the radial force increases more rapidly from pole to the equator than 

for d positive. We point out that the rotation profiles of the current figures are determined from their equilibrium, rather than 

being imposed ad initio. 

Keywords: Gravitation, Hydrodynamics, Planets and Satellites: General, Stars: Rotation 

 

1. Introduction 

In papers [1, 2], models for Jupiter were constructed 

consisting of a set of concentric distorted spheroids 

(“spheroidals”), each of constant density and rotating with its 

own distribution of differential angular velocity. The 

demands were, firstly, that the gravity moments J2n, as 

calculated theoretically, agree with those surveyed by the 

Juno mission; and, secondly, that they be equilibrium figures. 

The equilibrium is sustained by gravitation, pressure, and 

rotation. The study here concerns exclusively to axial-

symmetric masses; ellipsoids with three unequal axes are not 

allowed, either distorted or not. In particular, the outermost 

shell of the models (on which the attention is focused) rotates, 

generally, differentially, with the pole running faster than the 

equator. 
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On the other hand, it is well-known that in the Sun the 

opposite tendency occurs [3]. This type of models are 

presented here for Jupiter, thus complementing the work on 

that planet. 

For Saturn, both types of models are also possible. The 

kind of models that better describes the two planets must be 

decided by observational means. Direct observations of 

Saturn’s local motions are the zonal winds [4, 5]. 

Measurements of the velocity field v (taken between 2004 

and 2009) from the Cassini-Saturn images at the northern 

hemisphere are plotted in Figure 1. 

 

Figure 1. Zonal wind profile for Saturn measured by the Cassini mission 

between 2004 and 2009, according to [5]. v is the velocity in ����, and � is 
the latitude in degrees. 

Supposing this motion comes from rotation, the angular 

velocity ��	
 � � 	⁄  can be deduced, where R is the distance 

from the rotation axis ( � � 90° ). To establish R at each 

latitude �, take as surface the equation z (R) of the models (see 

section 4.2), so that 	 � ��	/ ��� �
. The last relation allows 

getting R for each latitude. The rotational profile can 

consequently, be constructed, as shown in Figure 2. 

 

Figure 2. Saturn’s angular velocity profile ��	
 deduced from the velocity 
field of Figure 1. R is the distance from the rotation axis (R=0). 

In Figure 2, it is seen that the angular velocity does not 

follow a definite tendency, either increasing or decreasing. 

Since in former models, as well as in those presented here, � 

can increase or decrease from pole to the equator, the 

observed motions (below about 1 bar), although persistent, 

cannot be explained by our equilibrium figures. Moreover, 

the angular velocities depicted in Figure 2 are about one 

order of magnitude lower than the commonly values taken 

for Saturn [6], which are in accordance with our models. 

Information regarding deeper layers, rather than just at the 

atmospheric level, is required. In fact, the models predict 

rotation profiles that decrease in magnitude from the core 

outwards. 

In building the models, we suppose a core with a size of 

one-tenth of the planet radius, as in Gudkova’s study [7]. 

Certainly, this is not a necessary constraint for the procedure, 

and can be omitted, or replaced by any other. Of course, the 

external pressure is zero on the outermost shell (not named 

atmosphere here), but it may be substituted by any other 

constant value without essential changes. 

The planet model is constructed now by assuming that it 

comprises l layers of constant density each, approaching a 

continuous density distribution. The outermost layer must 

have the known polar and equatorial radii of the planet. 

Density and shape of the layers are established by demanding 

that the mass distribution reproduces the observed 

gravitational field of the planet. By requiring equilibrium of 

the model, a rotation state is found that allows it. Each shell 

has its own rotation profile, it being a result from the 

equilibrium, rather than being constrained from the beginning. 

In this procedure, we are not proposing or testing any 

particular chemical composition of the shells, nor seeking for 

a correct equation of state that could eventually lead to a 

temperature dependence. Hence our model may be applied to 

the Sun and stars. The purpose is to find the mass distribution 

that generates the known gravitation, which is independent of 

a special matter type or state equations. Knowledge of the 

density distribution might be a hint for structure researching 

for planets and stars, which usually assumes spherical 

symmetry. We do not claim that our models are unique, but 

imposing to them additional constraints taken perhaps from 

structure studies or other sources, they can correspond better 

to reality. For instance, Gudkova worked out a structure 

model for a planet supposing an ice-rock core of a certain 

size and mass, restriction that we imposed to our models. 

This is an example of how constraints taken from structure 

models can be implanted into the models. 

2. Theoretical Background 

In a previous work [8], the basis for studying equilibrium 

of a stratified mass in the state of rotation has been exposed 

at length; we summarize it here for the sake of a quick 

reference. The term equilibrium is used in this paper (and in 

the cited reference) as a synonymous with steady-state: the 

mass retains its shape despite the motion of each of its points. 

The shape (of the total mass and individual shells) is 

assumed to be of a known type, namely, a distorted spheroid 

with surface equation: 

�� ��� 
���

 + 
��
���

 + d 
�� 
���

�1                         (1) 

where �� is the equatorial radius, d the measure of the 

surface’s distortion (not restricted to be low), and �  is a 

quantity related to the polar radius �! through: 
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�! � �  "√$%����
&%                             (2) 

Although d is not limited to small values, it has a 

mathematical constraint: ' ( ) 1 4⁄ . The figure’s volume 

, can be established analytically: 

, � &-.�&%�√$%����/����0
�1%                      (3) 

Moreover, taking as reference a spheroid (d=0), its 

volume  42 ��& �!/3 lies between the volumes of those two 

cases. In other words, for positive d the spheroidal is more 

bloated than the spheroid, whereas for negative d it is more 

depressed, as depicted in Figure 3. 

 

Figure 3. Three graphs from equation (1), using the same polar and 

equatorial radii. Since the figures are axial-symmetric, only the x-z sections 

are depicted. The d > 0 spheroidal (red line) is more bloated than the 

spheroid (blue line). Conversely, the d < 0 spheroidal (black line) is more 

depressed than the spheroid. 

The equilibrium of the masses is based on a generalization 

of Bernoulli’s theorem [1, 2, 9], which establishes that, for a 

stream-line, the following relation holds 

�
&  �& ) 4 5  �

6  p=k                              (4) 

where v is the velocity field, V the gravitational potential, p 

the pressure, 7  the (constant) density, and k a constant. 

Assume that v is due to a rotation with angular velocity � 

about the z-axis Hence, the velocity is expressed as 

� � �)8, :, 0
�                                 (5) 

where the parenthesis represents a vector with Cartesian 

components –y, x, 0. The continuity equation, ; · v=0, puts a 

restriction on the dependence of � on x, y, z [10]: 

� � ��:& 5 8&, �
                                 (6) 

Essentially, k is constant for a particular streamline, but not 

for everyone. It is the same constant only if the motion is 

irrotational. In general, k must change [1, 6, 10] according to 

the relation 

; = � > ? �; ?  >
                                (7) 

Since the problem has cylindrical symmetry, it is more 

convenient to use cylindrical coordinates (R, @, z). In this 

system, the velocity has only a @ component (tangent to 

circles centered on the z-axis): 

> � �0, 	, 0
�                                    (8) 

Therefore, the components of equation (7) are 

H=
H	& � �	& H�

H	& 5  �
� 

IJ
I�� � 	&� IK

I��                                  (9) 

Equations (9) can be solved generally, with the result [1, 2, 9] 

= � �
&  	& �& 5 L�	&
,    �& � 2LN�	&
              (10) 

where f is an arbitrary function of 	&. Hence, � depends, at 

most, on 	&, and must be constant on cylinders of radius R, 

whose axis is the rotation axis. Substituting the expression 

for k into Bernoulli’s equation (4), one may determine the 

unknown function f: 

)L �	&
 ) 4�	&, �&
 5 �
6 P � 0                   (11) 

As f depends on R but not on z, its evaluation requires only 

of the figure surface, on which it is assumed p=0: 

L �	&
 � )4�	&, �&
                         (12) 

where in the gravitational potential V, z must be substituted 

by the surface equation, so that V becomes a function of R 

only. Knowing f, the angular velocity is established (see 

equation (10)): 

�& � )2 %Q
%R�                                  (13) 

Whenever the body’s shape is known, as it is the case here 

(equation (1)), the potential V can be calculated at any point, 

in particular, in the surface. By equation (12), � is obtained, 

i.e., given a figure, there is only one angular velocity profile 

with which it can rotate; conversely, given a certain angular 

velocity profile, an arbitrary figure cannot be put in rotation 

(in equilibrium). 

2.1. Multi-layer Structures 

Consider now an axial symmetric mass distribution 

consisting of l shells with surfaces of the kind (1) and 

constant density 7S  �T � 1, … , V
 each, 7� being the density of 

the outermost layer. For any layer, the equilibrium equation 

(11) holds: 

�
6W

PS � LS�	&
 5 4S�	&, �&
                    (14) 

where the last term is the total potential at the point (R, z) of 

the body; PS the pressure at that point, and LS is an unknown 

function. The LS  functions, l in total, are established by the 

boundary conditions at the several interfaces. At every point 

of surface: X�: P�=0;  X&: P� � P&, …; XS : PZ � PZ�� , where it 

is assumed that no transfer of mass occurs between shells. 

The XS surfaces are concentric, but otherwise independent of 

one another. Every surface equation is of the type [�	, �&
 �
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0, so that solving for z, one gets z=h(R), and all quantities in 

equation (14) depend on R only. Therefore, according to 

equation (14), and knowing that the potential is continuous, 

from the boundary conditions one has: 

�
6\

 P� = 0 = L� �	&
  + 4��	& , �&
           (15) 

PS = PS��: �7S − 7S��
4S + 7SLS − 7S��LS�� = 0     (16) 

or 

LS = − ]6W
6W

4S + 6W^\
6W

LS��,      L� = −4�           (17) 

where _7S = 7S − 7S�� and _7� = 7� 

Knowing the relation between �S  and LS  (see second of 

equations (10)), equation (17) allows one to determine the 

angular velocity of each shell: 

�S& = − &]6W
6W

%QW
%R� + 6W^\

6W
�S��& ,  ��& = −2 %Q\

%R�       (18) 

Hence, for calculating the angular velocity of the i-th 

shell, the total potential at the interface XS  and �  of the 

layer immediately above are required. We can expect 

generally that the potential derivative is not constant on an 

interface, so that the angular velocity is necessarily of 

differential nature. Certainly, the potential is related to the 

geometry and the density distribution of the body in an 

involved fashion. 

2.2. The Gravitational Moments 

The gravitational field at external points of a mass 

distribution with density 7�`
  is established if the 

gravitational moments are known. For an axis-symmetric 

configuration, they are even, and can be calculated by the 

following expression 

a&  = −�b�& 
�� c 7�`
`& d& e �fg��
',)   (19) 

where M, a and , are the mass, the equatorial radius, and the 

volume, respectively, of the body, d&  the Legendre 

polynomials of order 2n, and � the colatitude measured from 

the pole to the equator. The integral (19) can be evaluated 

more easily using cylindrical coordinates, and noticing that 

7�`
 = 7S for all points of the ith shell. Therefore, (19) 

breaks into a sum of integrals over layers of constant density: 

a& = −7�(b�& 
�� ∑ iZSj� S ×c �	& + �&
 d& 
 

eW k �
lR����m 

× 	'	'@'�, �� = 1,2, … 
                     (20) 

where 7�  is the density of the outermost shell, ,S the volume 

limited by XS, and iS the fractional relative density of the i-shell: 

iS = 6W � 6W^\
6W

                               (21) 

with i� = 1. Because the particular shape (1) of the shell 

surfaces, the integrals in (20) can be calculated exactly; they 

are given by 

− 6W
no�� c �	& + �&
 d& 

 
eW k �

lR����mRdRd@'� 

= L&  .��S, �nS,'S/                           (22) 

where the parameters of the i-th shell, ��S  and  �nS are 

normalized to the equator radius a of the body: 

��S = ��W
o , �nS = �0W

o                               (23) 

The functions L&  are given in Appendix A, they being 

reproduced from [1]. As a consequence of relations (20) and 

(22), the gravitational moments depend on 4l−2 parameters: 

��S , �nS,'S , iS  (i=1,…, l), and i� =1, �n� = p �⁄ , where b is 

the known planet’s polar radius. A figure of, say, ten layers 

needs 38 parameters to be specified in order to determine the 

a&  all. 

3. Numerical Procedure 

The observational basis for constructing a model is the 

gravitational field measured near the surfaces of fluid planets 

(Jupiter, Saturn) by some space missions. From these 

measurements, the gravitational moments are deduced; the 

models intend to reproduce them. The relation between the 

a&  and the 4l − 2 parameters of a model is certainly a 

complicated one, and numerical strategies are required to 

find them in order that the theoretical moments (20) replicate 

the observed ones. This approach was discussed at length in 

[2], and here is summarized for an easy reference. Let a& q  be 

the observed moments and a&  the theoretical ones given by 

equation (20). We look then for a model which satisfies 

a& = a& q , n=1,2,…, i.e., the necessary set of 4l − 2 

parameters to be found; alternatively, 

∑ �a&  − a& q 
&  =0                           (24) 

The gravitational moments, like any other observed 

quantity, have uncertainties, that we call _a& q , so that the 

variables fall within the interval 

a& q ± _a& q                                (25) 

within a given confidence range. Rather than using in (24) 

the central values a& q , one generates a set of moments at 

random from the intervals (25) and the group of parameters 

��S , �nS , 'S , iS  for a model is found by a minimization 

procedure: 

min ∑ �a&  −  a& q 
&                        (26) 

The models obtained this way are then tested for 

equilibrium, that is, one asks if angular velocities (18) are 

possible for the geometry and mass distributions achieved, 

finding that only a few models satisfy this demand. 

4. Numerical Results 

4.1. A Complement to Our Jupiter Multi-layer Model 

We recall that our Jupiter study was begun with a two-
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layer model [1], whose accuracy was not altogether 

satisfactory: the resulting as  was outside the confidence 

interval, and a$  was near the limit. Otherwise, the model 

satisfied the equilibrium conditions and, further, was stable to 

second harmonics. Next the model was generalized to l > 2 

concentric layers, onion-like assembled, and the technique 

described in section 3 was applied [2]. The procedure was 

supported by the known facts: 

Equatorial radius: a=7.1492 ? 10
7
 m 

Polar radius: b=6.6854 × 10
7
 m 

Period: T=9.92597 hrs. 

Mass: M=1.89861 ? 10&t Kg 

and the observed gravitational moments taken from the Juno 

mission [11-13] (in units of 10
-6

): 

J2=14697.3±0.0017, J4=– 586.623±0.0024 

J6=34.244±0.0067, J8=– 2.502±0.021             (27) 

In all these models, namely for l=2, and l > 2, the 

outermost layer had in common an angular velocity profile 

decreasing from the pole towards the equator, and the 

corresponding mean period was reasonably near the known 

value for Jupiter. 

Now, it is well-known that the Sun rotates differentially 

with an angular velocity that increases from the pole towards 

the equator [3]. This fact, along with a lack of precise 

knowledge on Jupiter rotation state, motivated us to search 

for more models, this time with an increasing tendency. The 

restrictions were again to reproduce the gravitational 

moments (27), and to be equilibrium figures. The mean 

rotation period was an additional restriction. The task was 

successful. For l=2, two new models were constructed: one 

with � increasing from pole to the equator (Model 1, Table 

1), and the other with opposite tendency. (Model 2, Table 1). 

In both models, the cores are large (70% of Jupiter equator), 

and have wide envelopes; the density increase inwards about 

ten times. In these figures, the densities are seen as mean 

values of more elaborated models A characteristic distinction 

of these models is the shape. Both have the same polar and 

equatorial radii, but the distortion parameter is negative in 

one, and positive in the other (Table 1). Hence, the second is 

more bloated than the first (Figure 3). In the depressed figure, 

the radial gravitational force increases faster from pole to the 

equator than in the bloated one, which help to explain the 

increasing tendency; and conversely. This point of view is 

discussed in more detail in section 4.2. For Model 1, the 

calculated moments are (in units of 10
-6

): 

J2=14696.4, J4=– 586.703 

J6=34.236, J8=– 2.454                          (28) 

These values are within the error bars. For Model 2, we 

have 

J2=14696.5, J4=– 5 86.674 

J6=34.525, J8=– 2.591                        (29) 

Table 1. Normalized equatorial radius 	�; shell density 7; equatorial pressure P�; equatorial and polar angular velocity �! and ��; and mean period uv of 

the surface, for two-layer models 1 (increasing � in first shell) and 2 (decreasing � T� LT`�� �ℎ�VV) for Jupiter. Surface distortion parameter '  is also 

indicated. 

xy  z  {y  |{  |y  }~  

norm Kgm �� Mbar �������/�  ����rad/s hr 

 Model 1 ' = −0.00695   

.000  0.0 1.728 1.785 9.93 

 358.1     

.700  22.0 1.914 1.956  

 3160.4     

 Model 2 ' = 0.00011   

.000  0.0 1.796 1.722 9.93 

 428.8     

.699  35.2 2.244 2.487  

 3021.4     

 
A multi-layer model with increasing � is given in Table 2. 

The mean period is alike as in the two-layer case, yet figures 

with shorter ones were also found, but discarded for the 

current study. There are jumps in the density of the second 

shell, and thereafter it increases approximately linearly 

towards the center [1, 7]. The shells rotate differentially, but 

� deviates little from solid-body rotation; from the second 

layer inwards, it increases regularly. 

Another model with decreasing � is given in Table 3. The 

first shell is relatively narrower than the second one, and its 

density is about 25 times smaller than the central one; here, 7 

has also a linear behavior. The angular velocity at the 

outermost surface decreases from pole to the equator, and the 

mean period is similar to that of previous cases. In the deeper 

layers, � is nearly constant, and increases towards the center. 

The basic difference between the models of Table 2 and 

Table 3 is, once more, the shape: Model 3 (d negative) is 

depressed, while Model 4 (d positive) is bloated. Hence, � 

increases from pole to the equator at the outermost surface of 

the first, and conversely for the second. Therefore, one can 

decide, at least qualitatively, if Jupiter rotates with one or the 

other profile, that is, if the planet is bloated or depressed with 

respect to a spheroid. 
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Table 2. Normalized equator radius 	�; shell density 7; equatorial pressure P�; polar and equatorial angular velocity �! and ��; and mean period uv of the 

surface, for multi-layer model 3 (increasing � in first shell) of Jupiter. Surface distortion parameter ' is also indicated. 

 xy  z  {y  |{  |y  }~  

norm Kgm �� Mbar ���� rad/s ����rd/s hr 

 Model 3 ' = −0.0054   

.000  0.0 1.740 1.773 9.94 

 32.6     

.905  2.42 1.198 1.261  

 1707.9     

.815  8.02 1.314 1.282  

 1728.0     

.768  8.52 1.367 1.303  

 1739.8     

.666  16.35 1.572 1.522  

 1763.6     

.588  17.10 1.931 1.875  

 1813.8     

.495  17.22 2.176 2.134  

 1856.0     

.426  17.06 2.270 2.232  

 1874.0     

.362  17.12 2.347 2.316  

 1889.5     

.304  17.36 2.518 2.490  

 1927.9     

.250  17.52 2.707 2.676  

 1974.6     

.203  17.47 2.831 2.810  

 2007.2     

.162  17.54 2.968 2.950  

 2046.3     

.127  17.43 3.052 3.041  

 2071.8     

.100  17.43 3.128 3.118  

 2096.3     

.000      

Table 3. Normalized equator radius 	�, shell density 7, pressure P�  at equator, angular velocity �! and �� in pole and equator and mean period uv of the 

surface, for multi-layer model 4 (decreasing � first shell) of Jupiter. Surface distortion parameter ' is also indicated. 

xy  z  {y  |{  |y  }~  

norm Kgm �� Mbar ���� rad/s ����rd/s hr 

 Model 4 � = �. ����   

.000  0.0 1.840 1.677 9.93 

 101.5     

.921  2.42 1.073 1.107  

 1566.8     

.788  4.42 1.343 1.111  

 1613.0     

.689  7.21 1.620 1.579  

 1646.4     

.597  10.3 2.485 2.411  

 1786.5     

.510  12.4 2.939 2.823  

 1901.7     

.430  14.4 3.294 3.152  

 2026.1     

.356  15.5 3.463 3.366  

 2088.3     

.288  17.4 3.790 3.727  

 2229.1     

.228  18.2 4.049 4.011  

 2353.7     

.176  18.1 4.103 4.080  

 2381.6     

.133  18.8 4.207 4.191  

 2438.2     

.100  19.2 4.330 4.320  

 2510.3     
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4.2. Saturn Models 

Attempts for building giant planet models can be found 

elsewhere. Recent observed facts are used in the structure 

equations that, commonly, are solved supposing spherical 

symmetry, from which there result a set of physical variables 

depending on the radius r; in particular, the density at each 

point is established: 7 � 7�`
. However, there are cases in 

which the results are expressed in terms of the pressure p: 

7 = 7�P
. Although any of the two representations can be 

used [5], it is more direct to take the density’s r-dependence. 

There are Saturn (and also Jupiter) models [7, 13] in which 

the density is (graphically) given, in terms of the distance 

from the center. In them, the density increases almost linearly 

from the outermost surface to the core (normalized r ≈ 0.1), 

where it makes a jump to remaining constant thereafter. Here, 

the constructed models differ from the two cited ones in 

some aspects: they rotate, do not possess spherical symmetry, 

and do not assume any chemical composition or a particular 

equation of state. The aim is mainly to establish a mass 

distribution and a rotation profile that may explain the 

observed gravitational field. Yet, it is intended that they be 

related to structure (spherical) models by constraining our 

figures to have an approximately linear density distribution in 

a wide part of them. As always, we demand that the models, 

besides of duplicating the observed gravitational moments, 

be equilibrium figures, and that the mean rotation period be 

close enough to the accepted one. Moreover, the Saturn 

models are sustained by the known relevant facts: 

Mass: b� = 5568319 × 10&�Kg 

Polar radius: b=60268000 m 

Equatorial radius: a=54364000 m 

And the gravitational moments surveyed by the Cassini 

mission (in units of 10
-6

) [14]: 

J2=16.290.573±0.028, J4=– 935.314±0.037 

J6=86.340±0.087, J8=– 14.624±0.205              (30) 

As in the case of Jupiter, we constructed Saturn models by, 

in a first step, randomly generating sets of a&  (within the 

error bars), and then determining the geometrical shape of the 

shells and their respective densities. Next, the obtained 

figures were tested for equilibrium, only a few of them 

meting this requirement. That is, an angular velocity 

distribution sustaining the equilibrium could be found for a 

few models. Furthermore, the mean value of the outermost 

surface of these figures seldom agrees with the observed one. 

Two models satisfying the whole restrictions were found: the 

first (Model 5, Table 4) with negative d; and the other (Model 

6, Table 5) with d positive. In both cases, the mean period Tm 

is, approximately, the observed one. Tm was calculated from 

the mean angular velocity at the outermost surface, given by 

�v = c ��	
'	�
�                           (31) 

In Tables 4 and 5, one sees that � increases from pole to 

the equator for d < 0 (> -1/4); but it gets backwards for d > 0. 

Once more, we have that, if the figure is more depressed than 

the spheroid, � increases from the pole to the equator. On the 

contrary, if the figure is more bloated than the spheroid, the 

tendency is reversed. To get an idea about how this process 

can happen, we constructed from each of the two 

heterogeneous models a mean homogeneous figure having as 

equatorial and polar radii the mean value of the 

corresponding radii of the shells, and as distortion parameter 

the mean value of that of the shells. That is 

�v = c  e 	�7',
c  e 7', =

	�� ∑  ZSj� 	�Si�S c  eW ',
∑  ZSj� iS c  eW ',  

�v = �0\ ∑  �W�\ �0W��W c  �W %e
∑  �W�\ �W c  �W %e                          (32) 

 'v =
'� ∑  ZSj� 'Si%S c  eW ',

∑  ZSj� iS c  eW ',  

where 

i�S = 7S	�S − 7S��	�S��
7�	��

, i�S = 7S�!S − 7S���!S��
7�	��

 

i%S = 6W%W�6W^\%W^\
6\R�\

, iS = 6W�6W^\
6\

                  (33) 

From relations (32) and (33), for d=– 0.030, we find 

�v = 0.5413, �v = 0.3256, 'v = 0.0549 (34) 

And, for d=0.020: 

�v = 0.5357, �v = 0.3223, 'v = 0.0478 (35) 

Models (34) and (35) are oblate (�v > �v) and they are 

quite similar (since they are related to the same planet). Let 

these figures be surrounded by surfaces identical to those of 

the corresponding heterogeneous models. Because the 

models are oblate, the radial force exerted at each point of 

the surfaces must increase from the pole to the equator, the 

force increasing more rapidly on the depressed (nearer to the 

mean model) surface than at the bloated one (farther than the 

mean model). 
Next, the radial force '4/'	 implied in equation (13) is 

calculated at each point of the surface of the planet’s model 

(first row of Tables 4 and 5). The numerical method supplies 

the force (calculated from a potential V normalized to G7��&) 

at discrete points and, for easy handling, we approximate it 

by a quadratic function. We find 

L�.��=14.405R + 2.521 R
2
 

L.�&=18.940R – 6.212 R
2
                       (36) 

All shells were constrained to be oblate, hence the 

resulting mean figure is oblate. Therefore, the radial force 

increases from pole (R=0) to the equator (R=1), the rate of 

increasing being higher for d=– 0.0030 (depressed surface) 

than for d=0.020 (bloated surface). However, prolate layers 

are also possible (rotation axis being larger than the 

equatorial one), so that if the model is worked out with such 
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shapes, the external force will be decreasing from pole to the 

equator. 

From equation (13), we can deduce the angular velocity 

(we call Ω=�&��7�
�� the normalized angular velocity) at 

the surface: 

Ω���=14.405 + 2.521 R 

Ω&�=18.940 – 6.212 R                         (37) 

It is easily seen that the angular velocity increases from the 

pole to the equator for d=– 0.0.030, whereas it decreases for 

d=0.020. The distortion parameter d plays an important role 

in the resulting angular velocity profile at the outermost 

surface of the planet. In order to see this more clearly, let us 

interchange the surfaces of the two models, so that the first 

becomes an envelope with d=0.020, and the second an 

envelope with d=– 0.030, but otherwise letting the shells and 

densities untouched. Calculating the forces at points of the 

new envelopes, one has 

L�.��∗ = 18.4489	 − 5.959	& 

L.�&∗ = 14.793	 + 2.473	&                     (38) 

and from here it can be deduced that the angular velocity 

profiles are also interchanged (although not numerically). 

That is, the same mass distribution gives rise to a greater 

radial force at a depressed (nearer to the rotation axis) surface 

than at a bloated one. 

Table 4. Normalized equator radius 	� and polar radius �! , shell density 7, angular velocity �! and ��  in pole and equator and mean period uv of the 

surface, for multi-layer Saturn Model 5 (increasing � in first shell). Surface distortion parameter ' is also indicated. 

xy  �{  z  |{  |y  }~  

norm norm Kgm �� ���� rad/s ����rad/s hr 

 Model 5 � = −�. ���   

.000 0.902 26.50 1.555 1.725 10.533 

.931 0.901 723.03 0.581 0.476  

.907 0.751 747.06 0.808 0.356  

.864 0.515 760.96 0.960 0.690  

.818 0.416 776.83 1.149 0.900  

.732 0.416 814.35 1.426 1.233  

.651 0.415 832.79 1.527 1.345  

.617 0.376 861.06 1.682 1.450  

.573 0.351 899.84 1.835 1.647  

.500 0.324 914.71 1.889 1.719  

.432 0.289 937.17 1.972 1.785  

.407 0.262 960.94 2.045 1.859  

.368 0.228 975.71 2.090 1.942  

.308 0.180 996.79 2.159 2.054  

.255 0.119 1015.5 2.229 2.151  

.239 0.100 1038.0 2.312 2.242  

.206 0.089 1091.5 2.494 2.406  

.164 0.067 1115.7 2.566 2.515  

.128 0.045 1141.5 2.646 2.607  

.100 0.012 1165.5 2.728 2.710  

Table 5. Normalized equator radius 	� and polar radius �! , shell density 7, angular velocity �! and ��  in pole and equator and mean period uv of the 

surface, for multi-layer Saturn Model 6 (decreasing � first shell). Surface distortion parameter ' is also indicated. 

xy  �{  z   |{  |y  }~  

norm norm Kgm �� �������/� �������/� hr 

 Model 6 � = �. ���   

.000 0.901 25.87 1.834 1.486 10.543 

.921 0.885 740.3 0.540 0.894  

.877 0.872 775.6 0.673 0.514  

.864 0.639 798.6 0.887 0.672  

.818 0.513 810.4 1.004 0.850  

.732 0.426 828.6 1.168 1.034  

.651 0.333 858.9 1.426 1.264  

.617 0.327 888.5 1.633 1.445  

.573 0.327 906.9 1.726 1.564  

.500 0.311 925.3 1.808 1.645  

.432 0.281 954.5 1.925 1.742  

.407 0.276 971.1 1.980 1.785  

.368 0.254 990.8 2.030 1.868  

.308 0.198 1016.4 2.119 1.956  

.255 0.173 1041.0 2.166 2.077  

.239 0.153 1075.3 2.262 2.111  

.206 0.126 1100.7 2.326 2.223  

.164 0.080 1131.1 2.424 2.340  

.128 0.062 1166.5 2.523 2.470  

.100 0.004 1190.4 2.616 2.591  
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5. Conclusions 

One of the current results is associated with the relation 

between the planet’s shape and its rotation profile. It has been 

seen that if the surface is more depressed than the spheroid 

i.e., when the surface is closer to the rotation axis of the mass 

distribution, the angular velocity increases from pole to the 

equator. This is due to the fact that the centripetal force at the 

surface increases rapidly from pole to the equator (section 

4.2). And conversely, when the figure is more bloated than 

the spheroid, the centripetal force increases more slowly. 

According to equation (13), the radial force determines 

� �`
. Evidently, the gravitational force also depends on the 

mass distribution, so that we can expect that, under certain 

circumstances, the obtained results may not be valid. To see 

this, a three-shell model was constructed for Jupiter, in which 

the density decreased from the outermost layer to the central 

one. The surface distortion parameter d was positive (bloated 

surface). The resulting rotation profile had an increasing 

behavior from pole to the equator, contrary to the outcomes 

of section 4.1 and 4.2. Obviously, such a model is not 

realistic for a planet, and it is mentioned here as an extreme 

case that allows to see how a mass distribution can affect a 

rotation profile. 

Rotation is perhaps a vastly common event in space. 

Planets rotate, some of them maybe differentially. Stars also 

rotate. There is evidence that stars (in the Kepler field) rotate 

with periods depending on the spectral type [15]. Moreover, 

Sun-like stars apparently rotate differentially [16, 17], and 

our Sun is not an exception, with the advantage that it can be 

observed in greater detail. Indeed, it is well-known that the 

Sun rotates with rates that change from pole to the equator [3, 

18], specifically with �! � 1.98 ? 10�s rad s��  and 

�� � 2.88 ? 10�s rad s��.  
This resembles our models with a negative distortion 

parameter, but larger angular velocities. For instance, in the 

Saturn case with d=– 0.030, we have �! � 1.55 ?
10�$ rad ��� and �� � 1.72 ? 10�$ rad ���. 

However, another distinction between the two profiles is 

clear: the angular velocity of the Sun increases faster from 

pole to the equator than in Saturn, as shown in Figure 4. 

 

Figure 4. Normalized angular velocity ���!
�� in dependence of the Sine of 

the latitude � for: the Sun (red line) and for our Saturn model with d=-0.030 
(black line). 

The two curves in Figure 4 are normalized to the 

corresponding polar angular velocity, so that at the pole: K
K0 � 1 �sin� � 1
. 

We remark that, in our approach, it is tacitly admitted a 

pre-existing angular velocity, supported by a certain 

gravitational field, that sustains the equilibrium of the models. 

In other words, we are not searching for the dynamical 

process giving rise finally to a persistent rotation state and a 

determinate surface shape. For example, regarding the Sun, it 

is believed that differential rotation is the consequence of 

interaction between convection and solid-body rotation. 

Appendix 

Analytical expressions for determining the gravitational moments. 

In terms of normalized variables, the integrals in (19) can be calculated by means of the functions: 

L���, �, :
 � £-o¤���
�1n����
 �3: 5 2
  

L&��, �, '
 � £-o¤���
��1n����
� �2�&�7:& 5 10: 5 4
 ) 3�5:& 5 7: 5 2
�&
  

L$��, �, '
 � ) £-o¤���
$1�$1n����
¤ �12�$�77:� 5 172:& 5 140: 5 40
 ) 156�&�15:� 5 29:& 5 18: 5 4
�& 5 143 �: 5

1
&�7: 5 2
�$
  

Ls��, �, '
 � £-o¤���
�1��1�n����
� �8�s�231:$ 5 708:� 5 876:& 5 504: 5 112
 ) 204�$�39:$ 5 99:� 5 96:& 5 44: 5 8
�&  (39) 

L£��, �, '
 �
) £-o¤���

&�t£1�1n����
¥ �80�£�209:1 5 818:$ 5 1364:� 5 1184:& 5 528: 5 96
 ) 160�s�663:1 5 2115:$52808:� 5
1972:& 5 728: 5 112
�& 5 2280�$�: 5 1
&�77:� 5 92:& 5 44: 5 8
�$ ) 2584�&�: 5 1
�? �39:& 5 22: 5 4
�s 5

1615 �: 5 1
$�11: 5 2
�£
  

where x=√4' 5 1. In the functions (A1), the factor )1/b�&  appearing in 
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the definition of a&  (equation (20)) is included. 
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